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By using the particle probability density we analyze the spin spin phase fluctuations because of stochastic particle migra-
echo attenuation of particles, diffusing in a bounded region. It tion in a nonuniform magnetic field
provides a means to expand a nonuniform spin phase distribution
into a series of waves that characterize the geometry and boundary E( t) Å »∑

i

e iui( t )
…L , [1]

conditions of confinement. Random motion disrupts the initial
phase structure created by applied gradients and consequently
discords its structure waves. By assuming the spin phase fluctua- where the phase term is given by
tion and/or the randomness of spin phase distribution in the sube-
nsemble as a Gaussian stochastic process, we derive a new analyti-
cal expression for the echo attenuation related to the particle veloc- ui ( t) Å g *

t

0

G( t *)ri ( t *)dt *, [2]
ity correlation. For a diffusion in porous structure we get the
expression featuring the same ‘‘diffusive diffraction’’ patterns as
those being found and explained by P. T. Callaghan and A. Coy with Gi being the gradient of the magnetic field at the i th
(‘‘Principles of Nuclear Magnetic Resonance Microscopy,’’ Oxford spin site. In the special case when two gradient pulses of
Univ. Press, Oxford (1991); J. Chem. Phys. 101, 4599–4609 (1994)) duration d separated by time D are very narrow, the average
with the use of propagator theory. With the new approach we cast

»rrr…L , Eq. [1] , can be evaluated by using the diffusion
a new light on the phenomena and derive analitically how the propagators (4) . Denoting the positions of a particle at time
diffusive diffractions appear when the sequence of finite or even

0 and D as r and r*, it gives the normalized echo amplitudemodulated gradients are applied. The method takes into account
the non-Markovian character of restricted diffusion, and therefore

E(q , D)the echo dependence on the diffusion lengths and on the strength
of applied gradient differs from the results of authors assuming

Å * dr◊(r) * dr *P(r *, DÉr , 0)e iqr (r =0r ) , [3]the Markovian diffusion either by dealing with the diffusion propa-
gators or by the computer simulation of Fick’s diffusion. q 1998

Academic Press

where q Å gGd. This method has been successfully used
for a restricted diffusion with the infinitely short gradient
pulses (SGP approximation). However, it does not provideINTRODUCTION
the general description of the effect when a finite or modu-
lated magnetic field is applied. The results of a few previousThe use of magnetic field gradients to detect the migration

of nuclear spins is almost as old as NMR itself. In his paper attempts to unfold it (5–7) can be applied only in the regime
of a weak gradient.Hahn (2) pointed out that the echo amplitude is affected by

the Brownian motion in the presence of local magnetic field It has seemed hardly possible to get exact analytical results
for restricted diffusion with the applied gradient pulses ofhomogeneity. Stejskal and Tanner (3) initiated the method-

ology and theory of the pulsed gradient spin echo (PGSE) finite duration, and therefore, only the numerical simulations
have been done (8–11) .experiment and implemented it to measure diffusion in sys-

tems for which restriction to motion caused a deviation from With the presumption of Gaussian randomness for the
spin frequency fluctuations we derived, in 1981, a formulaFickian behavior. Since then, the method has been exten-

sively developed. Investigating molecular motions in con- for the diffusive attenuation without any direct reliance on
the Fick’s diffusion law (12) . It provides very general rela-fined geometry, Callaghan (1) has shown how the narrow

pulse PGSE experiment can extract information about the tionship between spin attenuation and the microscopic parti-
cle motion, i.e., its single-particle velocity correlation (13) .geometry of the boundaries. Theory is based on the propaga-

tors obeying the Fick’s law to obtain the average over the This method shows that the spin echo can provide quite
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340 JANEZ STEPIŠNIK

an extensive list of information about microscopic motion quires a quantum mechanical evaluation of the expected val-
ues. It provides the induced voltage, Eq. [5] , by knowing(14, 15) .

Herein we are using a similar approach to study the spin the state of the system via its density matrix r( t) as
echo with diffusion inside the bounded region. Our aim is
to extend our previous theory and obtain the result that might

E( t) Å 0\g
d

dt
∑

i

Trr( t)IxiR(ri ) . [6]
surpasses a drawback of the propagator method being ame-
nable only with SGP and to Markov processes.

The application of the method to a system where the com- The density matrix
partment walls constrain the particle motion requires certain
reconsideration of previous assumption (12) , which states: r( t) Å U( t)r(0)U*( t) [7]

• The fluctuation of the spin echo frequency due to parti-
determines the spin evolution from the initial state r(0) duecle motion is supposed to behave as a stochastic Gaussian
to interaction with internal and applied fields, intermolecularprocess.
interactions, and collisions with the boundaries. With respect

In Ref. (16) we have supplemented it by the extension: to other interactions, the quantum state of the spin-bearing
particles cannot be treated as a genuinely closed and isolated• When frequency fluctuations fail to behave in such a
system. It is an open subsystem of a large, closed system inway, the Gaussian phases distribution within the ensemble
which there is a division into subsystem and environment.can take this role.
If the density operator r describes the state of the total

With the motion restricted by the confinements, we must system, then one obtains the state rl of the subsystem by
add the following presumptions: tracing it over the environment. One can treat each individual

particle, closed within compartment boundaries, as a distin-
• Spin variables as well as the probability density of mov-

guished system being coupled to a bath of randomly collid-
ing particle determine the initial state of a system.

ing particles. To handle this complexity it is very helpful to
• Each particle is treated as a distinguished system being

consider separately variables associated with different kinds
coupled to a bath of randomly colliding particles in which

of interactions. Weak coupling of spin interaction to the
a density matrix in semi-quantum approximation describes

variables associated with particle motion allows the detach-
its probability density within bounded region.

ment of spin interaction from intermolecular interaction and
the interaction with confining barriers (16) . Thus one canThese assumptions are basic for the following theory of spin
partition the time evolution operator into a product of theecho with restricted diffusion.
noncommutable terms

SPIN ECHO INDUCTION AND PARTICLE MIGRATION
U( t) Å U( t)sU( t)m . [8]

A signal, induced by precessing magnetization in a coil,
In general in magnetic resonance an initial spin state is deter-can be written either in terms of the changing magnetic
mined by the spin evolution from a thermodynamic equilib-flux or, following the reciprocity theorem, in terms of spin
rium after preparation by a selective or nonselective RFmagnetization M( t) (13) as
pulse sequence. We may presume the density matrix at t Å
0 as having the form

E Å 0 ∑
i

d

dt
[Mi ( t)rR(ri )] , [4]

r(0)l Å \v0 ∑
i

rm(0)

where the ratio, R(ri ) Å Br /Ic (of the virtual magnetic field
1 (Micos fIxi / Misin fIyi / CiIzi) , [9]Br induced by the coil carrying virtual current Ic at the loca-

tion of a magnetic dipole Mi ) , describes the spin–coil inter-
with Mi , f, and Ci being constants denoting the state ofaction. For a long coil along the x axis the signal is given
spins after the preparation and with rm(0) as the remainingby
part of the density matrix truncated for the spin part.

The details, showing the manipulation of spin operators,
E Å 0\g

d

dt
∑

i

»IxiRxr(ri ) … , [5] are given elsewhere (14, 16) . Here we are using the result
that gives, in the case of quadrature detection, the normalized
spin echo (16) as

where the angle brackets »rrr… denote an average over the
spin variables and the variables associated with the particle E( t) Å Tr ∑

i

rm( t)e iu ( t ,ri )Mi R[ri ] , [10]
motion. A microscopic nature of spin-bearing molecules re-
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341SPIN ECHO ATTENUATION OF RESTRICTED DIFFUSION

with *
£
marks the integration over the compartment volume, while

»rrr…m denotes the trace over the fluctuating variables asso-
u( t , ri ) Å g *

t

0

G( t *)ri dt *, [11] ciated with the intermolecular interactions.
Thus Eq. [10] gets the form

where

E( t) Å K∑
i

*
£

drid[ri ( t) 0 ri ]e iu ( t ,ri )Mi R[ri ]L
m

. [16]
r( t)m Å U( t)mr(0)mU*( t)m . [12]

The remaining part of the density matrix, being a function
According to a previous definition, we can either expand theof particle coordinate, can be expanded as a sum
probability density, d[ri ( t)0 r] , into a series of plane waves
or write Eq. [16] asr(r , r*, t)m Å ∑

k ,k =

rk ,k =( t)ck(r)ck(r *) , [13]

E( t) Å »∑
i

e iu [ t ,ri( t ) ] Mi R[ri ( t)] …m . [17]where the functions fk(r) form a complete orthonormal set
of eigenfunctions of an operator acting upon the particle
coordinate. This operator could be the Hamiltonian describ- In the last equation, we render the expansion into plane
ing the particle confinement within the compartment bound- waves to the functions in brackets. Both the phase of spin
aries. Thus, the eigenfunction, needed to expand the density echo, u[ t , ri ( t)] , and the parameter of spin–coil interaction,
matrix, results from a solution of the quantum mechanical R[ri ( t)] , contain information about the particle location at
problem of a particle closed in a potential well, where the time t . We can convert dependence on the location into
potential well has the shape and strength of the walls con- dependence on a particle velocity, vi ( t) , by rewriting
straining the particle motion. Thus, these eigenfunctions and
eigenvalues characterize the compartment geometry and its

ri ( t) Å ri (0) / *
t

0

vi ( t *)dt *, [18]boundaries, and denote the momentum states k of closed
particle within the pore. In this way we have incorporated
a particle confinement into our consideration. The eigenfunc-

where ri (0) denotes the initial particle location. Integrationtions are standing waves that can always be expressed as a
of Eq. [2] givessuperposition of plane waves traveling in different directions

but with the characteristic momentum. Their wave vectors
are taken from the same characteristic set of momentum u( t) Å F( t)ri (0) / *

t

0

[F( t) 0 F( t *)]vi ( t *)dt *, [19]
states above. Thus one can write the density matrix (or
probability density of particle) as a sum of plane waves

with the phase factor,
rm(r , r*, t)m Å ∑

k,k =

rm(k , k)e i (kr0k =r = ) . [14]

F( t) Å g *
t

0

G( t *)dt *, [20]
The coupling to the environment is typically through posi-

tion, and the density operator tends to become approximately
being zero at the time of spin echo refocusing, t Å t. Thesediagonal in position very quickly. The emergence of classical
substitutions in Eq. [16] givebehavior for the variables which have become definite can

be seen by tracing the evolution of states initially localized
in phase space. Such states tend to follow approximately E( t) Å »∑

i

e iF ( t )ri(0)0 i*
t

0[F ( t )0F ( t = ) ]vi( t = )dt =Mi R[ri ( t)] …m .
classical trajectories. With the well-defined particle location
at time t , the density matrix in a semi-classical approxima-

[21]tion can be a probability function defined as

A finite length coil always suffers a degree of RF inhomo-P[r( t)] Å d[ri ( t) 0 r] , [15]
geneity, and therefore the correlation of R[ri ( t)] with initial

where a time dependence of particle coordinates ri ( t) comes spin excitation Mi affects the NMR signal when liquid is not
from molecular collisions. Thus the trace in Eq. [10] be- stationary. Thus, a signal attenuation occurs when diffusion
comes an integral length is comparable to the extension of the coil active zone.

It explains unusual broadening of NMR lines in gaseous
state (17, 18) . In a porous system the particle motion isTr rm( t)A(ri ) c K* P[ri ( t)]A(ri )driL

m

.
restricted within compartments of size much smaller than
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342 JANEZ STEPIŠNIK

that of a coil extension with nearly uniform R[ri ( t)] inside
particle confinement.

The motional correlation, hidden in the phase term, be-
comes discernible by rewriting Eq. [21] as

E(t) Å ∑
i

»e iFari(0)e0 iFa[ri(0)/dr =i(t ) ]
…m] , [22]

after neglecting spin-coil correlation. It describes the correla-
tion between the nonuniform spin phase distributions at dif-
ferent moments. Fa is the spin dephasing when the gradient
sequence is applied in the circumstance of moving spins. It
gives to nonstationary particles the decreasing effect of spin
dephasing when the width of the applied gradient pulse in-
creases. We named it effective spin dephasing (ESD). Thus,
the particle shift along the applied gradient seen from the

FIG. 1. The damping and the structure terms from the expression ofviewpoint of spin dephasing is
spin echo in the case of short diffusion length—a free diffusion.

dr *gi( t) Å *
t

0

F( t *)
ÉFaÉ

vgi ( t *)dt *. [23] havior may be different. For such a grouping the averages
within subensembles may be handled.

By performing the continuum limit, we can transformHere vgi is the velocity component along the applied gradient.
the sum on the subensemble into the mean value of theIt must be equal to the real particle shift when Fa is properly
subensemble variables in which one can also incorporate thedefined. In the following procedure of spin phase averaging
average motion of a particular spin. Thus we can join bothwe elucidate all details and meaning of these substitutions.
time and ensemble averages into common brackets asThe phase term in Eq. [22] is a function of the particle

coordinates. Similar to expansion with the probability func-
»∑

i

rrr…m c K* rrr drL . [26]tion, Eq. [16], one can write it as a series of plane waves

e iFar Å ∑
k

Sk(Fa)e ikr . [24] Furthermore, we can assume a stochastic process where the
fluctuating deviations of spin frequency v( t) from the mean
value have a Gaussian distribution. In Refs. (12–14, 16)The plane waves identify the shape and boundary conditions
we used the method of exponential expansion (cummulantof compartments in the reciprocal space with the set of their
expansion) in order to find a mean value of the phase term.wave vectors, k . They are different for planar, cylindrical,
This method transforms the average of randomly distributedor spherical geometry and also depend on the interconnectiv-
oscillators into an exponential series with an average phaseity of the compartment walls. With these substitutions, one
(see Appendix I).can rewrite the spin echo as

During the spin echo evolution, we observe the cumulative
effect of a large number of small but random perturbations

E(t) Å ∑
i

∑
k,k =

Sk(Fa)S/k =(Fa)e i (k0k = )ri(0)
»e ik =dr =i(t )

…m . of spin frequency. It is typical for the Gaussian process. In
such a case one can truncate all but the first two terms in

[25] Eq. [45]. In the description below we have applied the
method only to the frequency fluctuations. The same can be
done with respect to the randomness of spin phase distribu-PHASE AVERAGING AND SPIN ECHO ATTENUATION
tion within a subensemble. Namely, the particles that exer-WITH RESTRICTED DIFFUSION
cise almost simultaneous random walks in different direc-
tions bring about a random distribution of spin phase at anyThe signal echo arises from the induction of the immense

number of spinsú106, where one cannot detect the displace- instant. Their shifts are proportional to the length of the
particle drift along the applied gradient. For small phasements from the individual molecular collisions, but rather

from average long range displacements, where each particle deviations, it can be regarded as a Gaussian process, and we
can approximate it by the spin phase expansion to the secondshift arises from innumerable molecular collisions.

There is also another in which one may reasonably group order again. Thus both the time and the subensemble average
lead to the same approximation. Furthermore, it is beneficialspins into separate subensembles for which the dynamic be-
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343SPIN ECHO ATTENUATION OF RESTRICTED DIFFUSION

when the frequency fluctuations do not behave as a Gaussian pore. For a finite or modulated gradient it turns out that the
natural description of ESD via the velocity autocorrelationprocess, and we rely on the Gaussianity of the spin phase

distribution within a subensemble. Thus, one can always function and via the particle displacement in Eq. [22] is
derive the spin echo diffusive attenuation from the commu-
lant expansion which relates spin attentuation directly to

Fa(t) Å f
Rg(t)microscopic values.

The details, showing the procedure of phase averaging by
cummulant expansion in Eq. [25], are given elsewhere (16) . 1

√
*

t

0

dt * *
t

0

dt 9 F(t *) »v(t *)rv(t 9)… F(t 9), [31]
Here we are using the result that gives, in the case of station-
ary liquid, »vg( t) … Å 0, and assumptions of isotropic re-
stricted self-diffusion in a pore, averaged as where f is a unit vector aligned along the gradient. Its substi-

tution in Eq. [25] gives the spin echo of restricted diffusion
in isotropic fluid as

»eikdr=gi(t)
… Å »eik et0

F (t )

Fa
vgi (t ) dt

…

E(t) Å ∑
k

Sk(Fa)S/k (Fa)e0
1

2
k2R2

g(t). [32]Å e0
1

2F2
a

et0 dt1 et0 dt2F (t1)k »vgi(t1)rvgi(t2)… kF (t2). [27]

The first factor in the sum of Eq. [32], SkS/k , is the compo-
The diffusion constant is equal to the time integral of the nent of the spin phase structure within a pore set up by

tagged particle velocity autocorrelation function gradient spin dephasing Fa . The second one, e0
1

2
k2R2

g(t), de-
notes the damping due to diffusion and depends only on the
length of particle diffusion Rg . For a diffusion length much

D Å 1
6 lim

tr`
*

t

0

»vi(t)rvi(0)… dt, [28] shorter than the compartment size, the structure component
is a narrow function settled in the region around the point
k Å Fa (Fig. 1). By using the identity

and the diffusion length in the time interval t along the
applied gradient is ∑

k

Sk(Fa) S/k (Fa) Å 1, [33]

Rg(t)2 Å *
t

0

dt * *
t

0

dt 9 »vg(t *)rvg((t 9)…. [29] and neglecting the long time tail for velocity correlation, the
well-known expression for spin echo attenuation appears as

For an infinite system the velocity correlation is positive E(t) Å e0
1

2
F2

aR2
g (t)

and falls off exponentially with time. In this case the diffu-
Å e0F2

a (t)Dt. [34]sion constant and the diffusion length are related as

The damping due to diffusion is greater for the compo-
Rg(t)2 Å 2Dt. [30] nents with the highest values of k . Figure 2 shows the spin

In a confined system the effect of the walls sets up a small
negative velocity correlation which persists for a long time.
It gives the diffusion constant D which decreases with time
and Rg which cannot be larger than the dimensions of the
cell. The works of others (19–21) indicate that the shape of
the long time tail depends on the nature of the molecular
scattering on the walls. The velocity correlation for a per-
fectly reflecting wall in a one-dimensional cell is derived in
Ref. (22). It gives a long time tail for velocity correlation
with a maximal diffusion length equal to d 2/12 with d being
the cell width.

It was shown (23) that the velocity correlation function
changes only at wall proximity on a distance of a few mean-
free paths. For a much larger cell we can approximate the FIG. 2. The spin echo of particles diffusing between the parallel planes

as a function of diffusion length and mean gradient dephasing.velocity correlation as an almost uniform function inside the
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344 JANEZ STEPIŠNIK

echo as a function of diffusion length and gradient strength,
ÉFaÉ. Clearly, the diffraction-like pattern, which appears
along the gradient axis, becomes more distinct with in-
creased diffusion length which is limited above by the pore
dimension.

For a diffusion length about the size of the pore, all com-
ponents, except those with k Å 0, vanish, and the spin echo
becomes

E(t) É ÉS0(Fa)É2

É É*
V

e0Far drÉ2. [35]

It is similar either to the cross-section formula of neutron
scattering or to the Fraunhofer diffraction formula in optics.
ÉS0(Fa)É2 describes the diffraction pattern of the pore found
first by Coy and Callaghan (9) who named it the diffusive
diffraction and explained it by the propagator theory (4) in
the case of a sequence with two very short gradients. Our
result becomes identical to theirs when ÉFaÉ is replaced in
Eq. [32] by q* Å gdG. It means that we ignore the effects
of reduced dephasing for finite pulses. On the other hand
Eq. [32] follows from the propagator method when q * in
formula [3] (9) is replaced by ESD parameter Fa as

E(Fa , t)Å* dr %(r) * dr * P(r*, tÉr, 0)e iFar(r*0 r). [36]

FIG. 3. The spin echo as a function of q for different widths of gradientIn this case we assert that the propagator evolution rate
pulse at the diffusion lengths DD/L2 Å 1 and 4.depends on the time-dependent diffusion constant defined as

D(t) Å 1
2R 2

g(t)/t (22).
In the real analysis information about the compartment

for the effective gradient along an arbitrary direction, Fa Åshape, the boundary conditions, and perhaps something
Fax , Fay , Faz , areabout the size distribution must be available. In the following

we demonstrate the method on a simple case of diffusion
restricted inside a box of reflecting plan-parallel walls.

Sk(Fa)S/k (Fa) Å Fsin((kx 0 Faxdx) /2)
(kx 0 Fax)SELF-DIFFUSION RESTRICTED WITHIN

PLAN-PARALLEL PLANES

Here we are concerned with the molecular diffusion re- 1 sin((ky 0 Faydy) /2)
(ky 0 Fay)

sin((kz 0 Fazdz) /2)
(kz 0 Faz)

G2

,
stricted by a rectangular box with sides dx , dy , and dz . The
classic quantum solution of a particle closed within a rectan- [38]
gular box, with walls of infinite potential, gives the set of
wave vectors when all nx ,y ,z x 0. For each nx ,y ,z equal to zero, the above

expression is multiplied by 2.
For the gradient applied only along the x axis, the structurek Å F nxp

dx

,
nyp

dy

,
nzp

dz
G , [37]

factors in Eq. [32] are

with nx ,y ,z Å 1, 2, 3, . . . . The plane wave expansion of
probability density, Eq. [13], adds to it the component with Sk(Fa)S/k (Fa) Å Fsin((k 0 Fad) /2)

(k 0 Fa) G2

, [39]
nx ,y ,z Å 0. Thus, the components of reciprocal phase structure
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345SPIN ECHO ATTENUATION OF RESTRICTED DIFFUSION

when n x 0, and gGd, the effect observed in experiments of Callaghan (24–
26) and others (27). This new result follows right from spin
phase average, giving the direct reliance on the molecularS0(Fa)S/0 (Fa) Å 2Fsin(Fad /2)

(Fa) G2

, [40]
correlation. Thus, it surpasses a drawback of the propagator
method being amenable only with short gradient pulses and

for n Å 0. to the Markov processes. Using the propagator formalism,
The velocity correlation of a particle enclosed in a one- a relationship between the structure parameters restricting

dimensional box has been derived (22). For the sake of the migration and the spin echo can be determined when a
simplicity here we approximate it by the expression complete knowledge of the diffusion propagator is available.

However, people usually rely on the propagators derived
»v(t)rv(0)… Å D(be0bt 0 ke0kt), [41] from the Fick’s equation that are amenable only for the

Markovian diffusion.
where 1/b is molecular correlation time and k Å Da/d 2

x There are also numerical simulations of spin echo with
describes the rate of particle collision with walls. a is a gradient pulses of finite width in Refs. (8–11). The authors
parameter describing the nature of scattering. have simulated the spin echo of particles diffusing in a con-

Equation [41] gives the diffusion length in time t finement between reflecting walls, using various numeric
methods but assuming it is a Fick’s diffusion, i.e., as a Mar-
kov stochastic process. By comparing our results derived

R 2
g (t) Å D

k
(1 0 e0kt). [42]

from Eq. [32] in Fig. 3 and those in Refs. (8–11) we see a
resemblance but the diffraction dales are much shallower in
our case. We believe that the deep minimum in their casesAccording to this, the mean squared shift the particle reaches
follows from the assumption of unlimited diffusion lengthat long times t @ d 2/D is about
when Fick’s propagators are supposed to govern restricted
self-diffusion. For a Markov process, the correlation function

R2
g(t) Å d 2

a
, [43] fulfills the functional equation with the solution of a simple

one-exponential function (28). It is shown that the correla-
tion function of bounded diffusion is a nonexponential func-where a is 12 for a perfectly reflecting wall and around 3
tion and certainly must be considered as a non-Markovianfor a rough surface.
process. In such a case only solutions of more complexIn the special case when two gradient pulses of duration
Fokker–Planck’s equations provide appropriate propagators.d separated by time D are applied, the spin dephasing is
In our method, we can avoid this procedure but we must have
knowledge about the velocity correlation function. Figure 3

F 2
a(D, d) Å 2(gG)2 D

k3 R2
g(D / d)

(kd 0 1 / e0kd also shows that the position of the minimum as a function
of gGd moves with changing d/D. The shift depends on
DD/L2 as well as on the scattering parameter a. For the/ e0kD (1 0 cosh(kd)). [44]
gradient pulses of maximal widths, d/D Å 1, the first mini-
mum should be between qa Å

√
32p and about qa ÅWith these substitutions in Eq. [32] we get the spin echo as a

function of the diffusion length Rg(t) and the mean gradient
√
152p, depending on the above estimates for a.

dephasing, Fa . Figure 2 shows distinctive diffraction patterns Our new approach is useful for any sequence of finite or
for long diffusion lengths. The dales of pattern are placed modulated gradients and has no limit on the width of pulses.
at points where Fa equals a multiple of 2p. In our next paper, we’ll provide very coexistent experimental

verification of a new approach applying the modulated gradi-
CONCLUSION ent method to the study of diffusion in a porous structure.

It provides a new means to resolve the microscopic structure
With the new approach to the spin echo of restricted self- that limits the migration of molecules.

diffusion, we express the nonuniform spin phase distribution
in a pore as a series of waves with wave vectors characteriz-

APPENDIX Iing the geometry and boundaries of confinement. The
Gaussian assumption about the stochastic spin phase fluctu-

The oscillator with the fluctuating frequency v( t) can beation and/or the random spin phase distribution provides the
expanded into an infinite exponential series asanalytical expression for the echo attenuation of restricted

self-diffusion, Eq. [32], without a reference to the Fick’s
diffusion law. When the diffusion length is about the size

»e i*
t

0v( t = )dt =
… Å eg0( t )/g1( t )/g2( t )/rrr , [45]of the pore, it features a diffusive diffraction dependence on
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11. P. Linse and O. Söderman, J. Magn. Reson. A 116, 77–86 (1995).
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15. P. T. Callaghan and J. Stepišnik, J. Magn. Reson. A 117, 118–122

at long times t @ d 2/D is not larger than (1995).
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